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Abstract— To tackle the planning related challenges for an urban 

agglomeration (e.g., congestion, air-pollution exposure, etc.), 

minimally, traffic flow data is required to build/calibrate/validate 

a model and/or for policy testing. Traditionally, manual traffic 

data collection is a tedious job, highly uncertain process, prone to 

errors in and expensive. Further, data like trajectories of moving 

vehicles cannot be extracted using the manual process. A one-stop 

solution to these problems is to use computer vision techniques in 

extracting traffic data from the video data. The objectives of the 

present study are to develop a deep-learning-based system for 

autonomous extraction of classified vehicular positions and 

trajectories in space and time from the input video data and to 

examine the performance of the model in mixed traffic stream.  

The system uses the YOLOv3 object detection model with the 

‘TensorFlow’ API for detection and classification of the vehicles. A 

unique ID is assigned to every vehicle using Intersection over Union 

approach to detect the same in subsequent frames, to count the 

classified vehicles in various time-bins and to draw a unique 

trajectory for each vehicle. The model used for detecting vehicles 

is a unique model which is specially trained to suit India’s traffic 

conditions. Vehicle detection classes include bus, car, truck, 

autorickshaw, and motorcycle. The system exhibits the Mean 

Absolute Percentage Error (MAPE) as 20.6% for counting of the 

classified vehicles.  

Keywords— Heterogeneous Traffic, Classified Vehicle Count, 

Trajectory estimation, Vehicle Detection, Deep Learning 

I. Introduction 
Urbanization has led to areas with dense urban activities 

which results to densely populated areas. High population 

density has led to a tremendous increase in the number of private 

vehicles, an increased number of goods vehicles, and massive 

pedestrian traffic. This has increased the likelihood of road-

accidents, congestion and higher emissions. To solve such 

issues, city planners and researchers are trying to use various 

models to explore the traffic management strategies so that the 

negative effects can be diminished. The models can also help in 
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making efficient decisions, forecast and assess the 

consequences. 

Empirical traffic data are the basic input in any traffic 

management strategies and in building and analyzing traffic 

models. For autonomous collection of the data under 

homogeneous traffic conditions, several equipments are 

available. Among these, induction loops are widely used to 

serve both purposes of traffic management and traffic modeling 

purposes. In general, induction loops are deployed for each lane 

and may not be useful to collect data under mixed traffic 

conditions. Due to the limited success of such approaches and 

abundance of the video surveillance systems (also known as 

closed-circuit-television, CCTV) in most of the cities, a few 

image-processing-based data collection techniques are 

developed [1-3], which resonates induction loops in data 

collection. The video surveillance systems exhibit meteoric 

growth nowadays and usually include heterogeneous cameras 

with various resolutions, mounting points, and frame rates. A 

massive amount of data is generated through CCTV. This data 

can serve as a base for the automated traffic surveillance system. 

 In developing countries, like India, traffic includes different 

types of vehicles such as cars, buses, trucks, two-wheelers 

(motorized, non-motorized), three-wheelers (motorized, non-

motorized), etc. Two-wheelers and three-wheelers are 

comparatively small in size and due to their higher 

maneuverability, lane discipline is absent [4]. Induction loops 

may not be useful to collect data under mixed traffic conditions. 

Alternatively, researchers have been using either manual data 

collection techniques or video-filming-based methods. These 

methods are useful in collecting aggregated data such as 

classified traffic counts in various time-bins but are not useful 

in collecting microscopic data (e.g., vehicle-trajectories). 

Vehicle detection and analysis, through image processing and 

computer vision, owing to its nonintrusive nature and 

resourcefulness in computing nontrivial data has been a special 

area of interest. There are wide varieties of algorithms used in 

this area and a detailed review is presented in the following 

section. Using this, the Spatio-temporal attributes of the vehicles 
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can be obtained over a certain length of the road, which is useful 

in obtaining vehicular trajectory data. A lot of useful 

information can be extracted from the trajectory data, such as 

driver behavior. 

II. Literature Review 
Mainly, collecting traffic data over a stretch of road length is 

useful under mixed traffic conditions when compared to the data 

collected at a point on the road section [5-7]. Mallikarjuna et. al. 

[1] develop an offline image-processing-based system to obtain 

data from a video which uses the background-subtraction 

approach. The classification mechanism enables vehicular 

classification into four different categories, namely light motor 

vehicles (LMVs), motorized (TWs), heavy motor vehicles 

(HMVs), and motorized three-wheeler autos. The system is also 

capable of calculating individual vehicle characteristics such as 

trajectory. However, in this background-subtraction approach, 

vehicles are classified using the size which has a limited success 

rate in dense traffic conditions. Also, this cannot be applied to a 

video from a moving camera. 

There is a very limited number of researches in the area of 

analyzing data from video surveillance systems using deep 

learning. An overview of the recent advances in the topics 

related to the present work i.e. objects detection followed by 

multi-object tracking (MOT) is provided in the next two 

sections. 

A. Object Detection 
Currently, most of the object detectors are based on 

convolutional neural networks (CNN) and can be broadly 

divided into two categories. The first one is single-stage 

detectors and the second is two-stage detectors. Single-stage 

detectors, in general, are fast and predict objects bounding boxes 

together with classes in a single network pass. Examples of the 

single-stage detectors are You Only Look Once (YOLO) [8] and 

Single-Shot-Detector (SSD) [9]. These architectures work well 

in cases where target objects occupy a significant amount of the 

image. An example of such data is the UA-DETRAC vehicle 

detection dataset [10]. Based on this data, Dmitriy Anisimov and 

Tatiana Khanova [11] showed that a thoroughly constructed 

SSD-like detector can run faster than 40 frames per second on a 

modern CPU while maintaining good precision. Further, an 

improved example of the good speed-precision trade-off is 

YOLO v2 architecture [12], which was specialized for vehicle 

detection using additional loss normalization, multi-layer 

feature fusion strategy, and anchor clustering. The most 

significant example of two-stage detectors is the R-CNN family 

of detectors [13–15, 16] that currently occupy leading places in 

the COCO [17] and Cityscapes [18] datasets. In comparison to 

the single-stage detectors, two-stage detectors first predict 

regions and then refine and classify each of them during the 

second stage. Early R-CNN [14] work adopted a straightforward 

approach: regions are generated by a selective search algorithm 

and then fed to the classification CNN. The overall speed of the 

R-CNN is low because of the selective search compute time and 

requirement to run heavy classifier per each region. To 

overcome this limitation, Fast R-CNN was proposed [13]. 

Instead of running CNN for each region, Ross Girshick fed the 

whole image to the CNN and pooled Regions of Interest (RoI) 

from the last feature map. Replacing selective search in the 

Faster R-CNN [16] with tiny CNN, called region proposal 

network (RPN), further boosted the precision and speed of the 

detector. A thorough comparison between single and two-stage 

detectors is presented in the work, speed-accuracy tradeoff 

being central to it [19]. Many vehicle-detection works adopted 

variants of the Faster R-CNN architecture. Wang et al. [20] 

studied the application of the focal loss [21] for vehicle 

surveillance. Li [22] proposed to better handle blurring and 

short-term occlusions by processing multiple adjacent frames. 

They showed that being a relatively simple technique, focal loss 

provides significant performance improvements. Hu et al. [23] 

focused on improving the scale robustness of Faster R-CNN and 

suggested context-aware RoI (CARoI) pooling that uses 

deconvolution with bi-linear kernels to accurately represent the 

features for small objects. CARoI pooling works on top of the 

multiple layers and also fuses high- and low-level semantic 

information for enhanced performance. However, the 

improvements in terms of the speed-accuracy trade-off in the 

faster R-CNN are lesser than the YOLOv3 model. Therefore, as 

a starting point, the present study uses YOLOv3 for object 

detection. 

B. Multi-object tracking (MOT) 
The progress in the precision of the detectors mentioned above 

made tracking-by detection approach a leader in the multi-

object tracking (MOT) task. In this approach, tracking is viewed 

as a data association problem where the goal is to combine 

detections of unique vehicles across multiple frames into unique 

tracklets. Classical methods that use tracking-by-detection rely 

only on motion clues coming from the detector and deal with the 

Data Association problem using optimization techniques. Some 

well-known examples include Multiple Hypothesis Tracking 

(MHT) [24] and Joint Probabilistic Data Association Filter 

(JPDAF) [25]. These methods undertake the association 

problem on a frame-by-frame basis. However, their 

combinatorial complexity, which is exponential in the number 

of tracked objects, makes them unsuitable for real-time tracking. 

On the contrary, a recent SORT tracker [26] showed that 

combination of a simple Hungarian algorithm and Kalman 

filtering technique for movement forecasting could achieve real-

time processing speed while maintaining favorable 

performance. Most of the recent improvements in the MOT task 

involve fusing motion features with appearance one to 

distinguish highly occluded objects better and reidentify lost 

instances. The appearance clues usually come from 

convolutional neural networks [27, 28]. However, Tang et al. 

[29] showed that hand-crafted features, like the histogram of 

oriented gradients and color histograms, might also be used if 

no training data is provided. From the practical point of view, 

computing visual features for each tracked object leads to a 

highly increased computational burden, especially if the number 
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of objects is high. Thus, such approaches have limited 

application for mixed traffic conditions in dense urban 

agglomeration which is the main focus of the present study. 

Together with detector processing time, cumulative 

performance usually is far from being near real-time. It is non-

trivial to state that concurrent vehicle detection and tracking is a 

domain of active research [30, 31]. The coupling of these tasks 

might solve the performance problem mentioned above. 

Detectors already incorporate appearance features; detection 

precision will also benefit from the temporal image context. In 

the present study, to achieve higher accuracy, YOLOv3 is used 

and for robust and easy tracking, the Intersection Over Union 

algorithm is used. 

III. Methodology 
This paper aims to develop an autonomous approach which is 

capable of estimating traffic flow and trajectory, i.e. for 

counting and classifying vehicles by their movement directions 

and its trajectory calculation. To achieve that goal, the problem 

was divided into four sub-tasks: vehicle detection, vehicle 

tracking, vehicle counting, and trajectory estimation. The 

proposed approach leads to a modular and easy to test model 

composed of the detection and tracking modules. The process is 

demonstrated in Fig. 1. The following sections exhibit each 

module and their data requirements. The presented approach is 

made open-source and hosted at https://github.com/teg-

iitr/Computer-Vision-for-traffic-data-collection. 

A. Data Set 
For the proposed approach, two different datasets are used; 

they are The Indian Driving Dataset (IDD, see section A.1) [32] 

and the Pre-trained COCO weights (see Sec. A.2). The former 

is used for the purpose of training the YOLOv3 [33] object 

detection model and, the later is taken as the initial training 

weights and as an input to the model. New vehicle-classes like 

autorickshaw, two-wheeler, and truck are included. Also, these 

vehicle classes contribute to a wider portion of the Indian traffic.  

A.1 Indian Driving Dataset (IDD) 
The IDD consists of 6,993 labeled images for training, 

obtained from a front-facing camera attached to a car. It has 

fifteen vehicle classes in total which include vehicular classes 

like bicycles, motorbike, car, bus, truck, and autorickshaw. 

These are the classes used in the current proposed system. 

A.2 Common Object in Context (COCO) Dataset 
COCO [11] is a large-scale object detection, segmentation, 

and captioning dataset. For object detection, it has 80 object 

classes, including vehicular classes like bicycle, car, motorbike, 

bus, truck, etc. The authors used this dataset to obtain the 

YOLOv3 weights. These pre-trained weights are used in the 

proposed approach. 

B. Vehicle Detection Module 
For the purpose of vehicle detection in each frame of video 

data, the YOLOv3 object detection model is used which is the 

state-of-the-art deep learning-based model for object 

recognition related tasks.  

B.1 YOLOv3 Object Detection Model 
 YOLOv3 is an improved version over YOLOv2. It includes a 

much deeper network “Darknet-53”, i.e. 53 convolutional layers 

whereas YOLOv2 uses Darknet-19 [12, 33]. It has a better 

feature extractor and a better object detector with feature map 

up-sampling and concatenation. The objectness score is 

predicted using logistic regression. Unlike in YOLOv2, instead 

of “Softmax” for class prediction, independent logistic 

classifiers and binary cross-entropy loss is used. Just like in 

YOLOv2 it uses Batch Normalization. Its feature map is taken 

from two previous layers and is up-sampled by 2 times. Another 

feature map is also taken from an earlier network layer and is 

merged with the up-sampled features using concatenation. This 

is a typical encoder-decoder architecture that resonates with the 

evolution of the Single Shot Detector (SSD) to De-

convolutional Single Shot Detector (DSSD). In this, the sum of 

squared error loss is used during the training. Finally, “k-means 

clustering” is used here to find a better bounding box prior. 

B.2 YOLOv3 for vehicle detection 
The YOLOv3 object detection model is trained exclusively 

for the detection of various vehicle classes. At first, the video is 

converted to frames at rate ‘r’ and duration ‘d’. The outer loop 

in Vehicle Detection Module (VDM) runs across the frames 

while the inner loop runs within a frame to detect individual 

vehicles. VDM consists of the YOLOv3 i.e. deep learning-based 

object detection model. ‘TensorFlow’ object detection API is 

used for detecting vehicles in a frame. The VDM takes raw 

video frames as input, processes it through the deep 

convolutional neural network and, yields the bounding box 

Figure 2: Flow-chart for the detection module. 

https://github.com/teg-iitr/Computer-Vision-for-traffic-data-collection
https://github.com/teg-iitr/Computer-Vision-for-traffic-data-collection
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-dssd-deconvolutional-single-shot-detector-object-detection-d4821a2bbeb5


 

4 

 

coordinates and the class of the detected vehicle. In order to 

avoid multiple bounding boxes for a detected 

vehicle/pedestrian, the Non-Maximum Suppression (NMS) 

method is used. NMS is a post-processing step that transforms 

many imprecise bounding boxes, ideally, in a single bounding-

box for each detected vehicle. The flow-chart shown in Fig 2 

represents the detection module. Fig. 3 compares the raw frame 

and the preocessed frame showing the detected vehicles along 

with there respective class. 

C. Vehicle Tracking Module 
Object tracking is the process of taking initial set of object 

detections (bounding box coordinates), assigning a unique ID to 

each of the initial detected vehicle and then tracking each of the 

vehicle as they move around frames in the video, while 

maintaining the assignment of unique IDs. The assignment of 

unique ID is important to extract the vehicle-trajectory. For this 

purpose, the “mean Intersection Over Union (IOU) and Linear 

Sum Assignment” [34] tracking methods are used, which does 

the task robustly with minimal error associated. The concept of 
IOU  is that if a bounding box in the current frame overlaps the 

one in the previous frame, it’s probably the same object or 

vehicle (in present case). For this purpose a “Shape score” is 

calculated for every individual bounding box in the current 

frame. Considering bounding boxes in the previous frame, the 

bounding box which has highest shape score, is assigned the 

same vehicle ID. If the shape and size dose not vary much, the 

score is higher. This is demonstrated in Fig. 4 with sample 

scores. The red bounding box belongs to the current frame and 

the green bounding box belongs to the previous frame. 

 

 

D. Vehicle Counting Module 

 
The counting algorithm works across the frames. The inputs 

to the algorithm are the bounding box coordinates and classes of 

the detected vehicle. A region (green region) is defined using 

two lines in the frame (Fig. 5) called a counting zone. 

The algorithm for counting is presented in Fig. 6. First, the 

centroid for each bounding box is calculated and are stored in a 

list. In the counting step, the counter will count just the vehicles 

which are passing in a specific direction. The loop in Fig. 6 is 

iterated for every centroid in the list. Additionally, if a vehicle 

stops, turns or moves in the wrong direction in the detection 

zone, it will not be counted. In this technique, counting is 

according to the number of moving vehicles detected in the 

detection zone (between red dotted lines for each direction, i.e. 

boundary conditions) and classified in one of the mentioned 

classes. After the vehicle is counted, it is removed from the list 

of detected vehicles in order to avoid re-counting. The 

Figure 5: Counting Zone and trajectory plotting. 

Figure 6: Counting Algorithm. 

Figure 3: Raw video frame and processed frame. 

Figure 4: Sample IOU scores (Shape scores) 
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aggregated count is shown at the top left corner of the frame and 

the class and time of passing are saved in a text file. 

 

E. Vehicle Trajectory Module 
After the vehicle is detected and tracked across the frame, its 

trajectory is plotted, using the saved centroid coordinates. To 

avoid chaos trajectory is plotted using simple dots/circles, only 

in the translucent overlay frame (Blue region) as shown in Fig. 

5. With the help of allotted unique ID of individual vehicles, 

unique trajectories are plotted. A text file containing detected 

vehicle class, its unique ID and coordinates of trajectory, with 

respect to the frame is also stored. This data is then plotted on 

the road network.  

IV. CORROBORATION OF Results 

A. Case study 
In order to test the functionality of the proposed system, a case 

study is conducted. For the purpose, a CCTV footage of T-

intersection in the Delhi NCR (National Capital Region), having 

coordinates (28o26’56.5’’N 77o07’20.0’’E) is used (see Fig. 5). 

The study area has two-lane roads. CCTV footage (video data) 

of the location is fed to the system to extract traffic parameters. 

In counting, the classified vehicle count is obtained and then 

compared to the manually obtained count. The comparison is 

shown in Table 1. 

B. Results 
 For detection, average precision (AP), a popular metric in 

measuring the accuracy of object detectors like Faster R-CNN, 

SSD, YOLOv3, etc. is used. The average precision (AP) values 

for each detected vehicular class is shown in Fig. 7. The mean 

average precision (mAP) of the system is 0.70. 

Further, the Mean Absolute Percentage Error (MAPE) is used 

for verifying the accuracies in the vehicular counts. This is 

calculated using the following formula. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
× ∑

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
× 100

𝑛

𝑖=1

 

 

Error, less than 10% is considered highly accurate, between 

11-20% is good, 21-50% is acceptable and more than 50% is 

inaccurate [35]. MAPE for both side of the road is calculated 

manually using the observed count and the predicted count by 

the system (Table. 1). 

 

 

Fig. 8 and Fig. 9 are showing the trajectories of car and 

motorbike respectively in the detection zone. Different colors in 

the figures are represeting trajectories of the vehicles. 

Interestingly, a few vehicles turning left or taking ‘U’ turn are 

also identified in it. Further, from the trajectories of the vehicles, 

it can be observed that ratio of lateral to longitudnal 

displacement of the motorbike is higher than car which is a 

typical behavior of the smaller vehicles with higher 

Vehicle 

Class 

Left Right 

Observed Predicted Observed Predicted 

Bicycle 3 2 0 0 

Motorbike 127 121 47 40 

Auto-

rickshaw 
3 2 5 3 

Car 348 342 238 236 

Bus 2 2 1 1 

Truck 7 9 12 9 

MAPE 20.6 % 

Figure 9: Agrregated Trajectories for Motorbike 

Figure 7: Average precision values for vehicular classes  
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Figure 8: Agrregated Trajectories for Cars 

Table 1: MAPE Calculation 
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maneuverability. Thus, the trajectories also validate the 

detection of the classified vehicles. 

V. Conclusion 
 This study presents a traffic data extraction system, based on 

computer vision and image processing algorithms. In the 

proposed system, the vehicles are identified according to 

predefined vehicle classes, counted in the counting zone and 

finally, the trajectories are plotted for the detection zone. The 

system is able to classify the vehicles using a combination of 

image processing methods and processing through a Deep 

Convolutional Neural Network (DCNN). The results indicate 

that the presented method works effectively. The classified 

detection test error is about 30 percent. The counting error is 

about 20.6 percentage which makes it suitable for vehicle 

detection and traffic analysis purposes. Further, the system also 

provides the trajectories of the classified vehicles. The system 

holds the potential to (a) to reduce the costs (time and monetary) 

of carrying out a traffic survey with lesser chances of errors and 

good accuracy (b) obtain both the microscopic and macroscopic 

traffic parameters for a huge dataset quickly. 
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